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ABSTRACT

The objective of this study was to evaluate the performance of color camera machine
vision for lumber processing in a furniture rough mill. The study used 134 red oak boards
to compare the performance of automated gang-rip-first rough mill yield based on a
prototype color camera lumber inspection system developed at Virginia Tech with both
estimated optimum rough mill yield and actual measured rough mill yield. Automated
yield was found to be 56.3 percent compared to 69.1 percent (optimum) and 65.6 percent
(observed). The relatively low yield based on the color camera lumber scanning system
was due to the fact that image processing algorithms were very sensitive and tended to
identify and cut out defects that were not truly present. The natural variations in the color
of clear wood of red oak suggests that other sensing techniques along with color sensing
will be needed to accurately characterize those lumber features that are important in

furniture rough mill processing.

Cutti ng lumber into dimension
partsis typically performed in a rough
mill, the initial stage of the manufacture
of furniture. The yield of parts that can be
obtained from lumber in the furniture
rough mill is a very important part of
running a profitable furniture plant. With
recent increases in lumber prices, lower
available grades of lumber, and increased
competition, rough mill yields play an
even more important role in maintaining
profitability. Wengert and Lamb (18) es-
timated that a 1 percent increase in yield
in a furniture rough mill can potentially
reduce its manufacturing cost by 2 per-
cent. For a medium-sized rough mill, the
cost savings associated with a 1 to 2
percent yield increase can range from
$150,000 to $300,000 annually.

Traditionaly, visual inspection of lum-
ber is used to locate lumber features that
are critica in the rough mill manufactur-
ing process. Proper identification and
treatment of those features that reduce
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the value and quality of the final products
iskey to achieving the best yield in the
rough mill operation. Such features are
more commonly referred to as lumber
“defects.” With visual inspection of lum-
ber in the rough mill, which is till almost
exclusively accomplished by human op-
erators, the maximum potential yield is
reduced by human judgment errors. It is
very difficult to accurately and consis-
tently locate lumber defects by human
inspection at production speeds. A study
conducted by Huber et al. (11) found the
accuracy with which human operators

recognized and |located defects to be 68
percent. This level of inaccurate identifi-
cation suggests a substantial negative im-
pact on rough mill yields and costs.

Progress has been made in developing
new technologies to help automate rough
mill systems. This progressis apparent in
the development of laser-guided gang-
ripping technologies and defect marking
systems for automatic chop saws (1).
These new technologies are making it
much easier for human operators to con-
centrate on locating those features on
lumber that are important to achieving
maximum yield, while maintaining a de-
sired level of part quality in the rough
mill. However, state-of-the-art technolo-
gies still rely on manual lumber inspec-
tion, and hence, still incorporate sub-op-
timal information into “optimization”
solutions.

For the last several years, new systems
have been proposed to completely auto-
mate the rough mill using machine vision
technologies. Substantial work has been
done in developing machine vision sys-
tems for automatic lumber inspection
(3,9,12,13). Machine vision systems
have the potential to handle more com-
plex decisions to best match various lum-
ber surface characteristics to an array of
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different part quality specifications.
Every single defect including type, posi-
tion, and size can be taken into account.
A study conducted by Conners et al. (8)
found that using color in machine vision
systems can help reveal surface defects
on lumber. More recently, progress has
been made in establishing an automatic
color image interpretation and defect rec-
ognition system that can be used to auto-
mate the lumber inspection process in
rough mill systems (9). Although differ-
ent results have been reported on the ac-
curacy of this defect recognition system
(4,9), no thorough investigation has been
performed to assess its performance in a
more redlistic furniture rough mill setting.

The purpose of this study was to evau-
ate the performance of color camera ma-
chine vision for lumber processing in a
furniture rough mill. Since many pro-
posed automatic lumber inspection sys-
tems would involve a substantial invest-
ment, it is worthwhile to establish
procedures that can be used to investigate
the relative performance of these sys-
tems. This investigation sets up a proce-
dure with which the performance of dif-
ferent automatic lumber inspection
systems can be assessed and compared.
More specifically, this study compares
the performance of a color camera ma-
chine vision system to both optimum and
observed rough mill processing by ac-
complishing the following objectives:

1. Measure the observed rough mill
yield from an actual furniture rough mill;

2. Estimate the optimum rough mill
yield through computer simulation using
actual lumber data, including location
and type of al grading features;

3. Estimate the automated rough mill
yield through computer simulation with
data input from a color camera lumber
inspection system and compare it to the
observed and optimum yield.

M ATERIALS AND METHODS

The experimental procedures in this
study included the preparation of lumber
specimens, data collection techniques
used at the laboratory and at the mill,
optimization procedures, and yield
analysis. Data collection in the labora-
tory for both manual and automated lum-
ber descriptions involved digitizing
board features such as width, length, and
the type, size, and location of defects.
Manual lumber description and defect
digitizing was done very carefully and is
assumed to be highly accurate, thus these
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Figure 1. — The grade distribution of the lumber sample (based on the NHLA

standard kiln-dry rule (14).

data represent complete and perfect de-
fect information. Optimization proce-
dures included using a lumber cut-up
program, ROMI-RIP (15,16), to estimate
the best yield for two different scenarios:
1) based on perfect defect information
(manua lumber description); and 2)
based on defect information generated
from an experimental color camera ma-
chine vision system (automated lumber
description). Finally, the yield analysis
involves measuring the part yield ob-
tained in an actual rough mill and com-
paring yield results.
LUMBER SAMPLE

A sample of 134 kiln-dried, skip-
planed, 414, red oak board specimens was
used in the study. The lumber was ob-
tained from a rough mill in southwest
Virginia. Due to field-of-view limitations
in the color camera scanning system, the
sample was selected such that a maxi-
mum board width of 13 inches was not
exceeded. The average moisture content
of the lumber was found to be approxi-
mately 7 percent at the time of the experi-
ment. Sample board lengths consisted of
70 boards and 64 boards that were 10 feet
and 12 feet long, respectively. Sample
board width, which ranged from 3.00
inches to 12.75 inches, averaged 5.50
inches. Board widths were recorded
based on the National Hardwood Lum-
ber Association (NHLA) grading rule
specification at a point one-third the
length of the piece from the narrow end
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(14). The distribution of NHLA board
grade is shown in Figure 1. Sample
boards were cleaned to eliminate dark
soil and grease marks to ensure maxi-
mum accuracy during both manual and
automatic lumber digitization.

M ANUAL BOARD DIGITIZATION

Board features were recorded manu-
ally using a technique for recording
board defect data described by Anderson
et a. (2). The information acquired from
this digitization technique includes board
size information and defect information.
Lumber dimensions and defect areas
were measured as rectangular shapes.
One unitin both x and y directionsin the
Cartesian coordinate system corresponds
to 1/4 inch. The y coordinate corresponds
to the width of the board and the x coor-
dinate corresponds to the length of the
board. Defect sizes were recorded on
both faces using the smallest bounding
rectangle that enclosed the area of a de-
fect. Defect types were recorded using an
adoption of the code system employed
by Gatchell et a. (10) in the red oak data
bank. Table 1 gives a complete listing of
the defect types recorded and their codes.

In summary, the total data for each
board included: a board label, coordi-
nates defining the minimum bounding
rectangle that encloses the board, coordi-
nates defining each minimum bounding
rectangle that encloses a defect, the board
face on which the defect is located, and
the defect type code. The format of the
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data files containing the board informa-
tion was written in a data format consis-
tent with ROMI-RIP' S lumber data input
specification (15). More specific details
on the digitization procedure are con-
tained in other publications (2,19).

AUTOMATIC DEFECT DETECTION

The same 134 boards that were manu-
ally digitized were scanned by running
them through a prototype machine vision
system located at the Brooks Forest
Products Center at Virginia Tech (12).
The lumber scanning system is shown in
Figure 2. The lumber was positioned on
an infeed conveyor prior to scanning,
such that the designated origin (0,0) of
the scanned board image is the same as
that of manual digitization. After the po-
sition of the board was established, it was
released into the scanning system where
afull-length color image was collected
for the top face of the board. Based on a
reference mark identifying the board face
and the board end for the designated ori-
gin (0,0), the board is sent through the
scanner as straight as the scanning sys-
tem would allow. Although the infeed
conveyor in front of the scanning system
has a fence to keep the board straight,
there was no fence within the scanning
system to ensure straight movement
through the system. The scanning proc-
ess was repeated on the opposite board
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face. Every board was fed through twice
because hardware was only available to
scan one side per run.

Scanned color images for both faces
were stored in the computer for further
processing. For verification purposes,
each board image was viewed on a com-
puter display. Boards that were not
scanned properly (e.g., improper light in-
tensity or other obvious scanning errors)
were re-scanned to ensure consistent re-
sults. An x-ray image also was recorded
for each board with the scanning system
but was not used in this study.

Color images for each board were later
processed by the computer to automat-
ically determine overall board length and
width, the coordinates defining each de-
fect size and location, the type of defect,
and the number of defects per board.
Algorithms used to process the color im-
ages were developed at Virginia Tech (5
7). Basically, these algorithms segment
the color image to separate clear wood
from potential defect regions. After seg-
mentation, each of these potential defect
regions is investigated further using a
know!edge-based approach. This knowl-
edge-based approach uses features from
each of the defect regions, such as size,
shape, location, and color, to verify if
they are, in fact, defects and to identify
the type of defect. The image-processing
software used in this experiment classi-
fied defects into the following classes:

Color
Imaging
System
Open Space for
Additional Sensors

wane, knot, split, hole, and void. These
classes represent only a subset of the total
number of defects that can be present on
red oak lumber (Table 1). This automat-
ically generated data was formatted to
match the data format used in the manual
digitization process.

As mentioned earlier, there was no
fence available within the scanning sys-
tem to ensure consistent alignment of the
boards during scanning. For some
scanned boards, substantial wander in the
width-wise direction resulted in images
that were not perfectly aligned with the
manually digitized boards. An alignment
software algorithm was developed to
compare the shape of the scanned board
to the shape of the true board as depicted
through manual digitization. The algo-
rithm adjusted board alignment by shift-
ing data from the scanned images in they
or width-wise direction. The effect of
board alignment on yield in this study
will be discussed in the Results section.

MiLL sTuDpY

After all of the lumber was digitized,
the same 134 boards were processed into
furniture cuttings at a southwest Virginia
rough mill. The mill was arip-first rough
mill system that used a laser-guided
gang-ripsaw and a set of automatic cut-
off (chop) saws. The process was con-
trolled by a command center that opti-
mized for a specified cutting bill.

Open Space for
Additional Sensors

\ N\
Lumber
Detection
Drive
\ Rollers
Stop

Figure 2.— Schematic of lumber-handling and scanning system with the color line-scan camera sensor used to scan the boards

as they passed through the system.
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Optimization employed two independent
computer programs. 1) a program for
maximizing strip yield at the gang-rip-
saw: and 2) a program for optimizing
part yield at the chop saws.

The ripsaw arbor system used by the
mill was a fixed-blade-best-feed system.
Under this system, all gang-ripsaw
blades were fixed and boards were fed
into a gang-ripsaw with a movable fence
at the left edge of the incoming boards.
The strips from the ripsaw were then
moved to the chop saw station where mill
operators examined strips for defects and
then marked their location with fluores-
cent crayons. Next, marked strips were
run through a mark sensing scanner to
locate the position of defects and relay
defect location information to the com-
mand center. The command center deter-
mines the optimum cutting of the strip
based on defect location and cutting bill
requirements and then directs the chop
saw where to cut the strip. Finaly, the
system has the flexibility to remanufac-
ture parts through either re-rip or re-chop
salvage operations.

The mill’s cutting bill during the study
included 3 widths and 11 lengths. This
cutting bill and the actual quantity of
cuttings generated at the mill for the 134
board samplesislisted in Table 2. The
mill’s command center achieves the
quantity of parts by adjusting part prior-
ity values. For example, many 58.5-inch
parts were required for the particular pro-
duction run; therefore, al 58.5-inch parts
were assigned a high priority to assure
that enough parts were generated. On the
other hand, very few 30-inch parts were
required and they were assigned arela-
tively low priority. The part quality speci-
fied by the mill was Sound 2-Face furni-
ture cuttings. Sound defects such as
mineral streak, sapstain, and sound knots
were designated to be acceptable defects
and were alowed on either face. Also,
the mill allowed small unsound defects
(maximum size: 1/4-in. diameter) for the
production run.

Senior operators with the most experi-
ence were selected to make the key cut-
ting decision at both the ripsaw and chop
saw stations. Only one crosscutting line
was used during the experiment to sim-
plify the data collection activity. All parts
generated at the mill were gathered and
brought back to the Brooks Center Labo-
ratory for further examination. In the
laboratory, parts were inspected and
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grouped according to the origina board,
and the actual observed yield of every
board was calculated. While inspecting
all parts to ensure they followed the
mill’s part quality specification, atotal of
143 parts (45 BF) were found to have
unacceptable defects. All of these parts
could be reprocessed with additional
sawing to produce 143 acceptable sal-
vage parts (31 BF). The size of these
salvage parts was caculated such that
yield was maximized according to the
alowable cuttings shown in Table?2. The
mill manager and saw operators were
contacted to verify that these parts
would, in fact, be further processed into
salvage parts as determined in the labora-
tory. A complete description of the mill
layout, material flow, data collection ac-
tivity, and data preparation is contained
in Widoyoko's thesis (19).

ROUGH MILL SIMULATION

Using ROMI-RIP (15,16), lumber data
generated from both manual digitization
and automated defect detection were
processed using the same variables ob-
served in the rough mill. Those variables
consist of cutting bill, arbor type, blade
spacing on the arbor, and allowable de-
fects on the parts. The same arbor con-
figuration used in the mill was simulated
in ROMI-RIP. As mentioned earlier, the
saw arbor type is fixed-blade-best-feed
with nine spacings (in.) from left to right:
3.00, 3.00, 2.50, 1.75, 2.50, 2.50, 1.75,
1.75, 1.75.

The mill’s cutting bill including quan-
tity of obtained parts was set up for the
ROMI-RIP simulations according to the
actual cuttings generated in the mill (Ta-
ble 2). To avoid the production of parts
not specified in the cutting bill, desired
part quantities were set slightly higher
(5%) than the actual cuttings observed in
the mill. Complex Dynamic Exponent, a
part prioritization strategy that dynami-
caly assigns each part size a priority
based on its size and desired quantity,
was the prioritization strategy option se-
lected in the ROMI-RIP simulations (16).

To match the part quality criteria used
in the actual mill, all acceptable defects
were excluded from the list of board de-
fects i.e, sapstains, minera streaks,
sound knots, and unsound defects with
an areaof 0.0625in.”or lower. DATA-
MOD (17), a data-modification program,
was used to exclude these defects consid-
ered to be acceptable on the parts.
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TABLE 1. —Defect types and codes used in iden -
tifying and digitizing board features.

Defect code Defect description
2 Void (corresponding with
crook and taper)
3 Pith
4 Decay
5 Shake
6 Pith-related tear or split
8 Wane
9 Sawline
10 Bark pocket
1 Grub hole (diameter 1/4 in.
and over)
11 Shot worm hole (diameter
between 1/1 6 and 1/4 in.)
211 Pin worm hole (diameter 1/1 6
in. or less)
12 Unsound knot
13 Burl with bark or check
14 Surface check
15 Sound knot
16 Machining defects
18 Incipient decay
19 Sticker stain
20 Bud trace with bark/check
22 Sapstain
23 Bird peck
24 Split
25 Mineral streak

TABLE 2. — Rough mill cutting bill and part
quantities generated during the mill study (Sound
2-face quality).

Width Length No. of parts
175 10 41
16 99
20.5 97
30 5
325 79
50 22
585 64
25 10 27
16 102
26.5 65
30 1
345 54
55.5 21
585 62
3.0 10 23
16 104
26.5 81
30 4
445 88

With lumber data scanned from the
color camera scanning system, there
were occasions when the scanning sys-
tem failed to detect al critical defects
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TABLE 3. — Summary of optimum, observed, and automated yields for the 134 boards.

Yield Operation yields Part yields
study method Ripsaw Chop saw Total Primarv Salvage Total
--------------------------- (%) ----mmmmm e
Observed 811 80,9 65.6 62.2 34 65.6
Optimum 85.2 811 69.1 67.4 17 69.1
Automated 80.1 70.3 56.3 475 8.8 56.3

present on the lumber. In the absence of
these defects, ROMI-RIP will generate
cuttings that include unacceptable de-
fects. An analysis routine was devel oped
to adjust yields to take these cuttings into
consideration. Basically, the routine
overlaystherip lines and crosscut lines
generated by ROMI-RIP' S output onto
the manually digitized board data. If a
valid cutting contains an unacceptable
defect, the routine saves the cutting in
standard ROMI-RIP [umber format with
the defects that are present on the cutting.
All of the defective cuttings generated
were then re-run through ROMI-RIP us-
ing the same cutting parameters as dis-
cussed previously to estimate a salvage
yield. To prevent ROMI-RIP from edg-
ing the salvage pieces again, the routine
also adjusted the width of the cuttings to
be dlightly larger. Since ROMI-RIP at-
tempts to produce cuttings with glue
quality edges, the dight adjustment in
width is equal to the width of two saw-
kerf lines, appropriately applied to each
edge of the part. The standard ROMI-RIP
output is used to determine the effect of
undetected defects on part yield.

Simulation output included total yield,
individual board yield, part distribution,
and description of primary and salvage
yield (15). The distribution of part sizes
generated from each ROMI-RIP simula-
tion was validated by checking it against
the observed cutting bill (Table 2). Ex-
cept where noted in the discussion, there
was very close agreement between the
number of simulated part sizes and the
observed. To check that al cuttings gen-
erated were of the required part qudlity,
all recorded board features and the cut-
ting lines generated in the smulation
were displayed on the Cartesian grid sys-
tem using ROMI-RIP'S graphical display
utility (15).

R ESULTS AND DISCUSSION

For the 134 red oak lumber samples,
Table 3 summarizes the yields for each
of the three yield study methods. The first
study method is referred to as the “ ob-
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served” rough mill yield and represents
the actual yield measured during the mill
study. The second study method is re-
ferred to as the “optimum” rough mill
yield and represents the best yield that
can be achieved from the set of lumber
given the use of a parts prioritization
schedule. Note that optimum rough mill
yield is based on manual board descrip-
tion and simulated cut-up. Finally, the
third method is referred to as the * auto-
mated” rough mill yield and represents
the best yield that can be achieved given
board defect information from a color
camera lumber inspection system. When
comparing the various study methods in
the following discussion, yield differ-
ences refer to absolute percentage point
differences rather than relative percent-
age differences (e.g., 5% more yield indi-
cates that 65% yield was obtained rather
than 60% yield).

RoOuUGH MILL YIELD

The total observed yield at the furni-
ture rough mill studied was found to be
65.6 percent (Table 3). Total yield was
measured based on the total area of parts
generated from the total input board area
(kiln-dried dimensions). This yield was
found to be 3.5 percentage points less
than optimum (69.1%). The automated
yield based on the color vision system
was found to have the lowest yield
(56.3%), which was 12.8 percentage
points less than optimum.

Part lengths and widths obtained in the
optimum yield study were distributed
very similarly to the parts obtained from
the observed yield study. The only nota-
ble difference in the optimum yield dis-
tribution was a greater (150%) number of
10-inch lengths generated for 1.75-inch-
wide parts. This difference was due to the
simulated salvage operation, which gen-
erated more of these 10-inch parts than
observed in an attempt to increase yield.
The automated yield simulation could
not match the number and distribution of
cuttings observed at the mill. In particu-
lar, there was a deficiency of wider parts

(width = 3.0 in.). The lower recovery of
cuttings was atributed to a smaller
amount of usable clear area on the
scanned boards due to many falsely de-
tected defects (called false positive er-
rors). Further observations on the impact
of these false defect detection errors will
be discussed later.

Most of the potential lossin yield at the
mill was observed to occur at the ripsaw
where the gang-rip saw yield (81.1%)
was found to be 4.1 percentage points
less than optimum (85.2%). Ripsaw yield
was measured based on the strip area
generated from the total board area. The
observed yield at the chop saws (80.9%)
was very close to optimum (81.1%). The
chop saw yield was calculated based on
the area of parts generated from the total
input strip area. For the automated yield
study, both ripsaw (80.1%) and chop saw
yields (70.3%) were found to be the low-
est of the three study methods.

in the observed yield study, primary
yield and salvage yield were found to be
62.2 percent and 3.4 percent, respec-
tively. Primary yield is calculated based
on the total area of parts generated after
only one rip operation and one chop op-
eration. Salvage yield is calculated based
on the total area of parts requiring sub-
sequent rip or chop operations beyond
that required for primary parts. Salvage
operations are typicaly employed to in-
crease part yield usualy at an added
rough mill manufacturing cost. Note that
the least amount of salvage parts were
generated through optimum yield (1 .7%)
and the most through automated yield
(8.8%).

EFFECT OF LUMBER

DEFECTS ON OBSERVED
ROUGH MILL PROCESSING

Table 4 lists al lumber features ob-
served on the 134 board samples, includ-
ing those features that were considered
acceptable to the mill. The surface area of
these features was measured by summing
the areas of all defect types found on both
sides of the lumber. The total area of
these features was found to be 13,608 in.*
or approximately 12.3 percent of the total
board surface area. Recall that sound
knots, sapstain, mineral streak, and other
unsound defects with areas of 0.0625 in.’
or lower were deemed by the mill as
acceptable defects. The total area of un-
acceptable features for this mill was
11,767 in.*or about 10.7 percent of the
total board area. By alowing certain
sound and small unsound features in the

MARCH 1998



cuttings, an additional 1.6 percent of the
total surface area of the lumber could be
used to produce cuttings.

Table 4 shows that void makes up the
largest unacceptable surface area, fol-
lowed by wane, unsound knots, splits,
and bark pockets. Void defects are typi-
cally used to describe board crook and
taper, and, hence it is not a true “defect”
in the sense of a surface feature on lum-
ber. However, the large area implies that
many of the boards are not truly rectan-
gular and can lead to operator judgment
errors, particularly during the setting of
laser lines during the gang-ripsaw proc-
ess. Presence of large void and wane ar-
eas can be one possible reason contribut-
ing to lower observed yield at the
gang-ripsaw (81.1%) compared to opti-
mum (85.2%).

As mentioned earlier, 143 parts gener-
ated in the observed mill study were
found to have objectionable defects on
closer examination. These 143 parts con-
tained 149 unacceptable defects and are
listed in Table 5. Wane was the most
frequent defect remaining on the parts
that required salvage operation. In the
observed mill system, wane was left on
primary parts intentionally in some cases
with the plan being to remove residual
wane in subsequent machining opera-
tions. Asshown in Table 5, the second
major cause of rejected parts was insuffi-
cient part width. Board crook and taper,
which are described as void, contribute to
insufficient part width. In the rough mill,
parts containing wane or having insuffi-
cient width size are typically re-ripped at
aseparate rip saw salvage operation. In
some cases, this salvage operation is
planned in an attempt to achieve greater
yield.

The observed mill system does a very
good job identifying critical defect types
as evidenced by a high chop saw yield
(80.9%) compared to optimum (81.1%).
Operators missed some unsound knots
and splits (Table 5), but given the fre-
quency of occurrence of knots and splits,
the relative miss rate islow (Table 4).
Because holes, bark pockets, and decay
occur with much less frequency (Table
4), these defects caused parts to be re-
jected infrequently (Table 5). In any
event, such occasional misses were not
observed to have a practical impact on
yield. These missed defects did, however,
tend to increase the volume of salvage
parts produced.
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EFFECT OF LUMBER SCANNING
ACCURACY ON AUTOMATED
ROUGH MILL PROCESSING

The automated rough mill processing
system was examined further by deter-
mining how defect detection errors in the
color camera scanning system impacted
yield. Defect detection accuracy was
measured in terms of false negative error
and false positive error. False negative
error means defect areas on the board that
the scanning system classified as clear
wood. False positive error means actual
clear wood areas that the scanning sys-
tem classified as defect. Areasrelating to
both false negative error and false posi-
tive error are measured by comparing the
lumber features generated by automatic
scanning with those of manual digitiza-
tion. False negative and false positive er-
rors were found to be 1,397 and 12,909
in.’, respectively. False negative error and
false positive error corresponds to 1.3
and 11.7 percent, respectively, of the total
lumber surface area (110,334 in.%).

To assess the effect of false negative
and false positive errors on the scanned
yield, the scanned data file was system-
atically adjusted to include defects that
were truly present and to remove those
defects that were truly clear wood. Since
the area associated with false positive
error was quite large (11.7% of the board
surface area), this error was expected to
have a large effect on yield. By removing
all false positive areas from the scanned
board data files and re-running ROMI -
RIP, the effect of false positive error on
yield was estimated. The scanned yield
with false positive areas removed is
found to be 68.7 percent, which is very
close to the optimum yield (69.1%). This
yield is 12.4 points higher than the origi-
nal scanned yield of 56.3 percent. Others
have noted that the color scanning sys-
tem is very sensitive when scanning red
oak lumber and it tends to identify de-
fects that are not truly present (4,9,).
However, it has not been known until
now how large an impact this sensitivity
can have on part yield.

The scanning sensitivity and resulting
false positive error can be attributed to
the presence of acceptable lumber fea-
tures that tend to be darker than clear
wood. Examples of such features include
mineral streak, sapstains, sound knots,
dirt, or unusual textures/grain patterns on
the lumber. As stated earlier, the present
color camera machine vision system is
limited in the recognition of the follow-
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TABLE 4. — Defect areas manually observed on
the 134 board specimens. The total usable board
surface area is 110,334 in. *

Defect types Area

(in.)
Void 7,592
Wane 1,909
Unsound knot 1,223
Sapstain 963
Minera streak 794
Split 442
Bark pocket 354
Machining defects 105
Hole 82
Sound knot 75
Sawline 22
Decay 19
Bud trace 12
Surface check 9
Shake 7
Total area 13,608

TABLE 5. — Frequency of defects left on rejected
parts needing rework in observed rough mill yield

study.

Type of defect Frequency
Wane 57
Insufficient width 42
Unsound knot 26
Split 17
Hole

Bark pocket 2
Decay

ing five feature types. wane, knots, holes,
splits, and void. When the system con-
fuses an acceptable feature such as min-
era streak for an unacceptable defect
such as a knot, afase positive error will
oceur.

Since mineral stresk, stains, and sound
knots are likely features that could gener-
ate false positive errors, their effect on
potential yield was investigated. This ef-
fect was investigated by including min-
eral streak, sapstain, sound knots, and
others as unacceptable defects in the
manually digitized board data files.
When mineral streak, sapstains, sound
knots, and all small unsound features are
treated as defects, optimum ROMI-RIP
yields dropped by 5.1 percentage points.
Therefore, it can be concluded that false
positive errors due to a limited feature
vocabulary can have a substantial effect
onyield. Recall that false positive error
caused a yield reduction of 12.4 percent-
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age points. Since 5.1 percentage points of
this reduction are explained by the lim-
ited feature vocabulary, other natural
variations in the color of clear wood exist
that have an equal, or perhaps greater,
effect on the sensitivity of the defect rec-
ognition algorithms.

Since the area associated with false
negative error is small (1.3% of the board
surface area), this error was expected to
have a small effect on yield. To confirm
this, al errors were corrected (fal se posi-
tive areas removed and false negative ar-
eas added) from the scanned board data
files and then ROMI-RIP was re-run on
the modified board data. The yield with
al errors corrected was found to be 67.8
percent (an increase of 11.5 percentage
points over the original automated rough
mill yield, 56.3%). Compared to the
yield with only false positive error areas
removed (68 .7%), the net effect on yield
isa 0.9 percent reduction. The relatively
small net change in yield confirms that
false negative error has only a small im-
pact on yield. However, in terms of parts
rework for salvage, false negative errors
lead to almost double the volume of parts
that have to be reworked (90.9 BF vs.
45.6 BF). Also, the greater amount of
salvage volume produced resulted in a
greater number of smaller partsthat are
not needed in the cutting bill.

EFFECT OF BOARD ALIGNMENT
ON AUTOMATED YIELDS

As mentioned earlier, the effect of a
board not running straight through the
system can have a substantial effect on
yield. Most of the scanned boards ran
relatively straight through the system.
However, due to factors such as uneven
lumber thickness and crook, approxi-
mately 10 percent of the boards deviated
over 1/2-inch from true end-to-end align-
ment. To assess the potential effect of
board alignment on yield, scanned lum-
ber data were processed with ROMI-RIP
both before and after images were
aligned with the manually digitized data.
The yield before and after alignment re-
sulted in 49.0 percent and 56.3 percent,
respectively, a difference of 7.3 percent-
age points. Therefore, misaligned lumber
through a scanning system can have a
substantial effect on yield.

EFFECT OF DEFECT
REPRESENTATION ON YIELD

Yield based on modified scanned
board data files with all errors corrected
(67.8%) was 1.3 percentage points less
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than optimum yield (69.1%). It would
appear that these two yields should be the
same because the modified scanned data
should be identical to the manual data.
Thisis not the case because when boards
are manually digitized, the human digi-
tizer makes certain judgments as to how
many rectangles should be used to de-
scribe a certain defect area. The automat-
ic defect recognition system tends to
break a defect area down into a more
complicated array of rectangles than is
typically done manually. Therefore, the
two sets of data are not exactly the same.
The optimization algorithm in ROMI-
RIP will proceed in a different manner on
board files from these two sets of data. A
yield difference of 1.3 percentage points
between the two data sets is significant,
and suggests that some future work will
be needed to optimize the representation
of defects in automatic lumber scanning
systems.

SUMMARY AND CONCLUSIONS

For several years, color camera ma-
chine vision systems have been proposed
as a technology that can replace the man-
ual lumber inspection process in the fur-
niture rough mill. Although this belief
has been the motivating force behind the
development of new automated systems,
no study has been available to justify how
well color camera machine vision sys-
tems can compete with current state-of-
the-art rough mill systems. Therefore, the
purpose of this study wasto rigorously
evaluate the performance of color camera
machine vision systems for lumber proc-
ng applicationsin the furniture rough
mill.

The color camera machine vision sys-
tem tested was developed at Virginia
Tech. This system is able to scan full-
sized lumber at industrial speeds and de-
termine the size and shape of lumber
along with the location and type of de-
fects present within the lumber. The ma-
chine vision system was compared to an
existing state-of-the-art rip-first rough
mill facility that uses a laser-guided
gang-ripsaw and a series of semi-auto-
matic chop saws that can optimally chop
strips into dimension parts based on op-
erator-placed crayon marks indicating
usable strip sections.

A sample of 134 red oak lumber speci-
mens was used in this study. First, the
lumber specimens were carefully hand-
digitized for an accurate description of
size, shape, and location of all lumber

features present, such as knots, wane,
stain, splits, and holes. Second, the lum-
ber was scanned with the color camera
machine vision system developed at Vir-
ginia Tech. This scanning resulted in a
machine description of the same features
obtained through manual digitization.

The lumber specimens were processed
in an actual rough mill as Sound 2-face
furniture parts of specified widths and
lengths that were typically produced at
the mill. Observed yields were recorded
at the mill and later verified for consis-
tency and accuracy in the laboratory.
Both the manually digitized lumber data
and the scanned lumber data were ana-
lyzed using ROMI-RIP, a rip-first rough
mill simulation software package. Simi-
lar conditions as observed in the rough
mill related to cutting bill specifications,
arbor set-up, cutting priorities, and de-
sired part quality were included in the
ROMI-RIP anaysis. The analysis re-
sulted in two sets of yield information,
one representing optimum yield (the best
yield that can be attained for the given set
of lumber) and the other representing the
automated yield (the yield that would be
attained for a proposed automated sys-
tem using color camera machine vision).
These two simulated yields were com-
pared with each other and with observed
yields from the mill study.

The following noteworthy results and
conclusions arose from this study:

1. The total observed yield in the
rough mill (65.6%) was 3.5 percentage
points lower than the optimum yield.

2. The major portion of the rough
mill’s yield loss was observed at its rip-
ping operation where observed ripsaw
yield (81.1%) was found to be 4.1 per-
centage points lower than the optimum.

3. The observed chop saw yield
(80.9%) is observed to be only 0.2 per-
centage points lower than the optimum
yield.

4. Compared to the optimum, over
twice as much volume of salvage parts
was generated in the observed rough
mill, which can lead to higher processing
costs.

5. The yield from the scanning system
is the lowest (56.3%) of the three yield
study methods, 9.3 and 12.8 percentage
points lower than observed and optimum
yields, respectively.
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6. When compared to optimum,
losses in yield for the machine vision
system are estimated to be reduced by
approximately 11.5 percentage points
due to errors in defect detection accuracy.

7. False positive defect detection er-
rors (actual clear wood areas classified as
defect) are the primary cause for yield
reduction for the machine vision system.
These errors are caused by acceptable
lumber features that tend to be darker
than clear wood (e.g., mineral streak,
apstains, sound knots, dirt, or unusual
textures/grain patterns).

8. False negative defect detection er-
rors (actual defect areas classified as
clear wood) have very little effect on
yield but double the volume of salvage
parts generated.

9. Other secondary factors associated
with automated systems such as preci-
sion material handling and optimum
lumber defect representation can also
have a substantial effect on rough mill
yield.

Although recent state-of-the-art rough
mill systems are performing very well in
terms of yield recovery, significant im-
provements can still be made through the
development of automatic lumber in-
spection systems. Conclusions from this
study indicate that automated lumber in-
spection systems based only on color
camera scanning are not likely to per-
form at the level required by mill man-
agement for red oak lumber. Future re-
search efforts are needed to improve the
accuracy of lumber defect recognition
systems by developing more sophisti-
cated real-time image-processing algo-
rithms and using a multiple-sensor ap-
proach for lumber inspection.
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